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Weak fountains in a stratified fluid

Wenxian Lin* and S. W. Armfield†
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The behavior of weak axisymmetric and plane fountains resulting from the injection of denser fluid upwards
into large containers containing a stably stratified fluid has been explored using dimensional analysis, scaling
analysis, and direct numerical simulation. For weak fountains, with Froude number Fr'1.0, dimensional and
scaling analyses have been used to derive scaling relations for the dimensionless fountain height, width,
thickness of the temperature layer, and development times in terms of the Froude number Fr, Reynolds number
Re, Prandtl number Pr, and ambient stratification numbers. Numerical simulations have been carried out for a
series of Fr, Re, Pr, ands for both axisymmetric and plane fountains to validate and quantify the scaling
relations obtained by the dimensional and scaling analyses. The numerical results have been found to agree
well with the analytical scaling relations.
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I. INTRODUCTION

Fountains occur with jets when the buoyancy force act
on the jet, as a result of a density difference between the
fluid and the surrounding ambient fluid, acts in the oppos
direction to that of the jet flow. Thus, both dense jets p
jected upwards into a less dense medium, and less dens
projected downwards into a more dense medium, will p
duce fountains. Considering only the upward projected de
flow, the jet will penetrate to a finite height, with the flu
then falling back as a plunging plume. In cases where the
source lies on a solid boundary and the ambient fluid is
mogeneous, the plunging plume falls to the boundary
then forms a gravity intrusion traveling away from the ma
fountain flow.

The behavior of a fountain is mainly controlled by th
Reynolds number Re, the Prandtl number Pr, and the Fro
number Fr, which are defined as follows:

Re5
V0X0

n
, Pr5

n

k
, Fr5S M0V0

B0X0
D 1/2

, ~1!

whereV0 is the discharge velocity,X0 is the radius of the
source orifice for an axisymmetric fountain or the half-wid
of the source slot for a plane fountain,n andk are the kine-
matic viscosity and thermal diffusivity of the fluid,M0 and
B0 are the specific momentum and buoyant flux, resp
tively. When the discharge velocity at the source is unifor
M0 andB0 are obtained as

M05pV0
2X0

2 , B05pg8V0X0
2 , ~2!

for axisymmetric fountains and

M052V0
2X0 , B052g8V0X0 , ~3!

for plane fountains, whereg8 is the reduced gravity betwee
the fountain and the ambient fluid at the discharge sou
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Therefore, for a uniform discharge velocity at the source,
is obtained for both axisymmetric and plane fountains
follows:

Fr5
V0

~X0g8!1/2
. ~4!

For strong fountains, the flow becomes turbulent qu
close to the source, and such flows are characterized b
@1.0. For these strong fountains, the fountain front,
plunging plume, and the intrusion flow are the distinct fe
tures. Many analytical and experimental studies on the fo
tain front and plunging plume have been carried out@1–12#.
The fountain outflow forms a gravity intrusion similar t
those that have been widely studied in other contexts@13–
15#. In general, the fountain investigations have focused
the fountain front and plunging flow rather than the intr
sion.

Weak fountains, characterized by Fr<1.0, have some dif-
ferent patterns of behavior from those of strong fountai
Weak fountains have no distinguishable upward and do
ward flow, instead the streamlines curve and spread from
source. In particular, the fountain top, downflow plume, a
intrusion are not distinct features, and the intrusion heigh
a substantial component of the total fountain height@16–19#.
Such weak fountains are expected to be laminar. Ear
work has shown that the laminar scalings break down for
greater than'1.5 @17#.

Weak fountains discharged into a stably stratified flu
have many applications. One example is the replenishing
cold salt water in solar ponds by weak fountain flows
maintain stable concentration and temperature gradient
order to suppress convective flows inside the ponds for
maximum collection and storage of solar energy@20#. A good
understanding of the behavior of weak fountains in stratifi
fluids is essential for the design and management of th
processes, as well as being of fundamental interest to fl
mechanics and heat transfer. Recently, we carried out a s
of scaling analysis and numerical studies on the behavio
weak fountains in homogeneous fluids@16–19#, however, no
©2002 The American Physical Society08-1
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study has been found that investigates the behavior of w
fountains in stratified fluids, which motivates us to condu
the current study.

Both scaling analysis and numerical simulations@16–19#
showed that the dimensionless fountain heightym and width
xw ~nondimensionalized byX0) provide a full parametriza-
tion of the fountain flow in the fountain core for weak fou
tains in a homogeneous ambient fluid. The vertical veloc
and temperature on the symmetry axis were scaled withym

and the horizontal distribution of both the vertical and ho
zontal velocities in the zone of self-similarity in the founta
core were scaled with bothym and xw . In addition, the di-
mensionless thicknessDy

T
~nondimensionalized byX0) of

the temperature layer on the symmetry axis, over which
fountain fluid temperature changes from the inlet value
that of the ambient fluid, provides a parametrization of
thermal structure of the fountain front, and the dimensionl
tms and tm f ~nondimensionalized byX0 /V0) provide the
time scales for the fountain flow in the fountain core to rea
a steady state and for the temperature layer to achieve
development, respectively.

The primary purpose of this study is to obtain scali
relations describing the behavior of weak fountains with
<1.0 when they are discharged into stably stratified amb
fluids. An initial scaling is obtained using dimensional arg
ments and assuming a power law relation between the fo
tain flow quantities and the control parameters. This
proach cannot provide a complete description of the sca
for the case when viscosity is assumed important and
stratification of the ambient fluid has to be taken into a
count, as then the number of control parameters is gre
than the number of dimensions, but does provide an ind
tion of the correct scaling relation, requiring only the eva
ation of two powers. To obtain tentative values for the u
known powers, a further scaling analysis is carried out ba
on the assumed viscous interaction that will influence
fountain height. The two flow regions, in which a visco
interaction will occur, are between the rising flow of th
fountain core, and the downward outer flow, and within t
viscous intrusion that forms downstream of the downw
outer flow. Viscous interaction between the fountain core a
downward outer flow will lead to a reduction in the founta
height, however, initial results showed that the fount
height increased with increasing viscosity so it was unlik
that this was the dominant viscous interaction in the flo
Increased viscous interaction in the intrusion means tha
ther the intrusion height will increase, or that the horizon
pressure gradient that drives the intrusion will increase
balance the increased viscous force and maintain the s
intrusion height. An increased intrusion height will requi
an increased fountain height for Fr,1.0, while an increased
horizontal pressure gradient will also require an increa
fountain height. Thus, the observed behavior of the w
fountain indicated that the primary viscous interaction w
that occurring in the intrusion. This observation was used
construct a scaling relation and obtain tentative values for
unknown powers remaining in the relation obtained from
dimensional analysis. The scaling relations are valida
06630
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using the numerical results and shown to provide a go
prediction of the observed fountain behavior.

II. DIMENSIONAL AND SCALING ANALYSES

Under consideration are axisymmetric and plane founta
in a stably stratified fluid. In the case of the axisymmet
fountains, the physical system is a vertical cylindrical co
tainer of heightH and radiusL while in the case of the plane
fountains, it is a rectangular container of heightH and half-
width L. In both the cases, the Newtonian fluid is initially
rest and linearly stratified, characterized by a constant st
fication parameterSp , with

Sp5F2
1

ra~0!

dra~Y!

dY G , ~5!

wherera(Y) andra(0) are, respectively, the density of th
ambient fluid at heightY and atY50, that is, the bottom of
the container. The temperature stratification parameter is

S5
]Ta~Y!

]Y
5b Sp ,

whereTa(Y) is the temperature of the ambient fluid at heig
Y andb is the coefficient of thermal expansion of the flui
The sidewall is nonslip and insulated and the top is open.
the bottom center, an orifice of radiusX0 for axisymmetric
fountains or a slot of half-widthX0 for plane fountains is
used for the fountain source. The remaining bottom regio
a rigid nonslip insulated boundary. At timet50, a stream of
fluid with a uniform discharge velocityV0 and at a lower
temperatureT0 @T0,Ta(0)# is discharged impulsively into
the container from the source to initiate the fountain, and t
discharge is maintained thereafter. For axisymmetric fo
tains, the flow is assumed to be axisymmetric and two
mensional while for plane fountains, the length in the sp
wise coordinate is assumed to be long enough so that t
dimensional flow may be assumed.

For weak fountains discharged into a homogeneous fl
it was shown that their behavior is well described by t
fountain heightYm , fountain widthXw , and timetm for the
flows in the fountain core to reach a steady state@16–19#.
Additionally, DY

T
, the thickness of the axis, over which th

temperature changes fromT0 to Ta(0), asshown in Fig. 1,
where both the temperature and vertical velocity profiles
the axis at a steady state are sketched for weak fountains
stratified fluid, provides a parametrization of the therm
structure of the fountain front. In a stratified fluid,S is an
additional control variable apart from Re, Pr, and Fr. In t
following dimensional and scaling analyses and the sub
quent numerical simulations, only weak fountains with
'1.0 will be considered.

A. Governing equations

Due to the symmetry of the system geometry and
boundary and initial conditions, one-half of the physical d
main may be chosen as the computational domain, while
weak fountain discharge makes it appropriate to assum
laminar flow. With the Boussinesq assumption, the govern
8-2
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equations are the Navier-Stokes equations and the temp
ture equation, which are written in dimensionless and inco
pressible form as follows:

1

xj

]~xju!

]x
1

]v
]y

50, ~6!

]u

]t
1

1

xj

]~xjuu!

]x
1

]~vu!

]y

52
]p

]x
1

1

ReH ]

]x F 1

xj

]~xju!

]x G1
]2u

]y2J , ~7!

]v
]t

1
1

xj

]~xjuv !

]x
1

]~vv !

]y

52
]p

]y
1

1

ReF 1

xj

]

]x S xj
]v
]xD1

]2v

]y2G1
1

Fr2
~u2ub,y!,

~8!

]u

]t
1

1

xj

]~xjuu!

]x
1

]~vu!

]y
5

1

Re PrF 1

xj

]

]x S xj
]u

]xD1
]2u

]y2G ,

~9!

wherej 50 and 1 denote the plane fountains and axisymm
ric fountains, respectively;x, y, u, v, t, p, andu are, respec-
tively the dimensionless horizontal and vertical coordinat
x velocity andy velocity, time, pressure, and temperatu
ub,y is the dimensionless temperature of the ambient fluid
heighty.

Nondimensional quantities are obtained as follows:

x5
X

X0
, y5

Y

X0
, u5

U

V0
, v5

V

V0
,

t5
t

~X0 /V0!
, p5

P

rV0
2

, u5
T2Ta,0

T02Ta,0
, ~10!

FIG. 1. A sketch of the profiles of the temperature and verti
velocity on the symmetry axis at a steady state.
06630
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wherer is density andX, Y, U, V, t, P, andT are the corre-
sponding dimensional quantities.

The appropriate initial and boundary conditions are

u5v50, u5ub,y , at all x,y, ~11!

whent,0 and

u50,
]v
]x

50,
]u

]x
50 at x50, 0<y<

H

X0
;

u5v50,
]u

]x
50 at x5

L

X0
, 0<y<

H

X0
;

u50, v51, u51 at 0<x<1, y50;

u5v50,
]u

]y
50 at 1,x<

L

X0
, y50;

]u

]y
5

]v
]y

50,
]u

]y
5s at 0<x<

L

X0
, y5

H

X0
,

~12!

whent>0.

B. Scaling relations

1. Fountain height

As Fr is '1.0, both the specific momentum fluxM0 and
the specific buoyancy fluxB0 are important. For weak foun
tains considered here, the kinematic viscosityn is also im-
portant, together with the stratificationSp when the ambient
is stratified. These four parameters will provide a compl
parametrization of the fountain heightYm , which is defined
as the height, at which the vertical velocity of the founta
front on the symmetry axis is zero at a steady state, as sh
in Fig. 1. ExpressingYm in terms ofM0 , B0 , Sp , andn as

Ym@5#M0
aB0

bSp
cnd, ~13!

where ‘‘@5# ’’ means ‘‘has the dimension of.’’
For axisymmetric fountains,M0 , B0 , Sp , andn have the

following units:

M0@5#L4T22, B0@5#L4T23,

Sp@5#L21, n@5#L2T21, ~14!

whereL andT represent the dimensions of length and tim
respectively. Therefore, from Eq.~13!, we have

L@5#~L4T22!a~L4T23!b~L21!c~L2T21!d

@5#L (4a14b2c12d)T(22a23b2d). ~15!

Hence, dimensional consistency then requires

4a14b2c12d51, ~16!

22a23b2d50, ~17!

l

8-3
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which give the following relations:

a52
d

2
1

3

4
~11c!, b52

1

2
~11c!. ~18!

With these relations, we find that for axisymmetric fountai

Ym@5#p2(1/2)(11c1d)@b~T02Ta,0!#
cFr(11c)scRe2dX0

;Fr(11c)scRe2dX0 , ~19!

where ‘‘; ’’ means ‘‘scales with,’’ p2(1/2)(11c1d)@b(T0
2Ta,0)#c is a dimensionless constant andSp has been repre
sented by the following dimensionless temperature stratifi
tion numbers:

s5
dua

dy
5

X0

b~T02Ta,0!
Sp . ~20!

For a linearly stratified fluid,s is a constant. Hence, the d
mensionless fountain heightym has the following scaling
relation with Fr, Re, ands:

ym5
Ym

X0
;Fr(11c)scRe2d. ~21!

For plane fountains,M0 , B0 , Sp , andn have the follow-
ing units:

M0@5#L3T22, B0@5#L3T23, Sp@5#L21,

n@5#L2T21. ~22!

Then from Eq.~13!, we have

L@5#~L3T22!a~L3T23!b~L21!c~L2T21!d

@5#L (3a13b2c12d)T(22a23b2d). ~23!

Hence, dimensional consistency then requires

3a13b2c12d51, ~24!

22a23b2d50, ~25!

which give the following relations:

a511c2d, b52 1
3 ~212c2d!. ~26!

With these relations, we find that for plane fountains

Ym@5#2(1/3)(11c22d)@b~T02Ta,0!#
c

3Fr(2/3)(212c2d)scRe2dX0

;Fr(2/3)(212c2d)scRe2dX0 , ~27!

and 2(1/3)(11c22d)@b(T02Ta,0)#c is a dimensionless con
stant. Hence, the dimensionless fountain heightym has the
following scaling relation with Fr, Re, ands:

ym5
Ym

X0
;Fr~2/3!(212c2d)scRe2d. ~28!
06630
,

a-

The powersc and d in Eqs. ~21! and ~28! remain un-
known, however tentative values may be obtained from
scaling analysis as follows. The scaling analysis uses
quantitiesXh andYh , whereXh is the distance, at which the
fountain outflow has formed a viscous intrusion, andYh is
the height of the intrusion. The analysis is based on the
sumption that for low Reynolds number flow, the height
weak fountains is controlled by the rate, at which fluid c
exit the fountain via the viscous intrusion that forms dow
stream of the fountain.

Over Xh , the primary balance in Eq.~7! will be between
the horizontal pressure gradient and the vertical diffusi
giving

p*

xh
;

u*

Reyh
2

, ~29!

where xh5Xh /X0 , yh5Yh /X0 , p* is the dimensionless
pressure scale, andu* is the dimensionless horizontal veloc
ity scale. Over the fountain heightym , the pressurep* is
governed by the pressure-buoyancy balance, which, from
~8!, gives

p*

ym
2

;
s

Fr2
, ~30!

where it is assumed thatym and s are greater than 1.0, an
thus the component of the pressure resulting from the st
fication will dominate that resulting from the difference b
tween the jet inlet density and the ambient density at the
inlet.

Combining Eqs.~30! and ~29! gives

ym
2 s

xh
;

u* Fr2

Reyh
2

. ~31!

Using Eq.~6! gives a scale foru* in terms of a vertical
velocity scalev* as

u* ;
xhv*

ym
, ~32!

which allows Eq.~31! to be written as

ym
2 s

xh
;

xhv* Fr2

Reymyh
2

. ~33!

Using v* ;1, this may be written as

ym
3 ;

xh
2Fr2

yh
2Res

. ~34!

Assuming the intrusion height scales with the intrusi
development distance,yh;xh then gives

ym;
Fr(2/3)

Re(1/3)s(1/3)
. ~35!
8-4
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On this basis,c may be tentatively set to21/3 andd to
1/3 in the scaling relations Eqs.~21! and ~28! for ym .

2. Fountain width

As shown in the previous studies@16–19# when both a
weak axisymmetric and a weak plane fountain flow in a h
mogeneous fluid are at a steady state, a characteristic f
tain width Xw can be determined. This is also true for we
fountains in a stratified fluid. To show the definition ofXw ,
the horizontal profiles of the vertical velocity aty50.1ym ,
0.2ym , 0.3ym , 0.4ym , 0.5ym , 0.6ym , 0.7ym , 0.8ym , and
0.9ym at a steady state are presented in Fig. 2, obtained
the numerical simulation for both an axisymmetric and
plane fountain with Fr51.0, Re5200, Pr51, ands52.5. At
each height, it is seen that the vertical velocityv(x,y), non-
dimensionalized byV0, decreases gradually asx increases
until at a specificx, v(x,y) becomes 0 for eachy, which is
the location, at which the upflow terminates and the dow
flow begins. Beyond this location,v(x,y) continues to re-
duce until a clearly defined minimum is reached, then
creases until it again crosses the zero line. The envelop
the minima for each height itself has a clearly defined m
mum as shown by the bold line in the figure, correspond
to y50.4ym and y50.6ym minimum, respectively, for the
axisymmetric and plane fountains considered, which occu
x>1.57 and 2.13, respectively. The minimum of the en
lope is found to be clearly defined for all Fr used, similar
the previous studies of weak fountains in homogeneous
ids @17,18#. This width was defined to be the fountain wid
and was found to be the horizontal length scale that cha
terizes the fountain flow in a homogeneous fluid at a ste
state@17,18#.

As xw is similar to ym , the scalings obtained forym are
also valid forxw , that is, for axisymmetric fountains with F
'1.0,

xw5
Xw

X0
;Fr(11c)scRe2d, ~36!

FIG. 2. Typical horizontal profiles of the vertical velocity at nin
heights at a steady state for~a! an axisymmetric fountain and~b! a
plane fountain, both with Fr51.0, Re5200, Pr51.0, ands52.5.
06630
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whereXw is the dimensional fountain width, and for plan
fountains with Fr'1.0,

xw;Fr(2/3)(212c2d)scRe2d. ~37!

With c521/3 andd51/3, these relations become

xw;
Fr(2/3)

Re(1/3)s(1/3)
, ~38!

3. Thickness of temperature layer

Similarly, M0 , B0, andSp are also important for the de
velopment of the temperature layer, together with the ther
diffusivity k instead ofn. Following the same procedure a
for ym , we find that dimensional consistency gives

DY
T
;X0Fr(11c)sc~Re Pr!2d, ~39!

for axisymmetric fountains with Fr'1.0, which then gives
the dimensionless temperature thicknessDy

T
as

Dy
T
5

DY
T

X0
;Fr(11c)sc~Re Pr!2d, ~40!

and for plane fountains with Fr'1.0,

Dy
T
;Fr(2/3)(212c2d)sc~Re Pr!2d. ~41!

With c521/3 andd51/3, these relations become

Dy
T
;

Fr2/3

~Re Prs!1/3
. ~42!

4. Time scales

There are two time scalestms andtm f to represent, respec
tively, the time scale for the fountain flow in the founta
core, which is the domain enclosed byx5xw andy5ym , to
reach a steady state and the time scale for the full deve
ment of the temperature layer, defined as follows:

tms;
Ym

Vm
, tm f;

DY
T

Vm
, ~43!

whereVm is the velocity that will scale with the developme
time.

For Vm , the governing parameters areM0 , B0 , n, and
Sp . A dimensional analysis similar to that used forym gives

Vm;V0Fr2(12c)scRe2d,

for axisymmetric fountains with Fr'1.0, and

Vm;V0Fr2(1/3)(122c1d)scRe2d,

for plane fountains with Fr'1.0.
Hence,
8-5
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tms;
X0

V0
Fr2, tm f;

X0

V0
Fr2Pr2d

for both axisymmetric and plane fountains with Fr'1.0,
which give the following dimensionless time scales:

tms5
tms

~X0 /V0!
;Fr2, ~44!

tm f5
tm f

~X0 /V0!
;Fr2Pr2d. ~45!

With d521/3, Eq.~45! becomes

tm f;Fr2Pr21/3. ~46!

When s50, that is, in a homogeneous fluid,c must be
equal to 0 and the scalings given above may be reworke
show thatd51/2 and the scalings~21!, ~28!, ~36!, ~37!, ~40!,
~41!, ~44!, and~45! reduce to

ym;Fr Re21/2, ~47!

xw;Fr Re21/2, ~48!

Dy
T
;Fr~Re Pr!21/2, ~49!

tms;Fr2, ~50!

tm f;Fr2Pr21/2, ~51!

which are exactly the scaling relations obtained for we
fountains with Fr'1.0 in homogeneous fluids@17#.

III. NUMERICAL RESULTS

A. Numerical method

The equations are discretized on a nonstaggered mes
ing finite volumes, with standard second-order central diff
ences used for the viscous, the pressure gradient and d
gence terms. The QUICK third-order upwind scheme is u
for the advective terms@21#. The momentum and tempera
ture equations are solved using an ADI scheme. The sec
order Adams-Bashforth scheme and Crank-Nicolson sch
are used for the time integration of the advective terms
the diffusive terms, respectively. To enforce the continu
the pressure correction method is used to construct a P
son’s equation, which is solved using the precondition
GMRES method. A detailed description of these schem
were given elsewhere@16,22# and the code has been used f
the simulation of a range of buoyancy dominated flo
@23,24#.

Due to large variations in length scales, it is necessar
use a mesh that concentrates points in the fountain re
and in the boundary layers and is relatively coarse in ot
regions. To construct such a mesh, a uniform fine mes
used in the regions of 0<x<5 and 0<y<2 for axisymmet-
ric fountains and of 0<x<4 and 0<y<3 for plane foun-
tains, respectively, and a stretched mesh is distributed in
remaining regions both in thex andy direction. The meshes
06630
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beyond the uniform mesh regions expand at a rate of 7.
up to x50.1(L/X025) and y50.1(H/X022) for axisym-
metric fountains and of 5% up tox50.1(L/X024) andy
50.1(H/X023) for plane fountains, respectively. Beyon
x50.1(L/X025) or x50.1(L/X024) and y50.1(H/X0
22) or y50.1(H/X023), the mesh size expansion rate d
creases at a rate of 10% until it reaches 0, resulting in c
stant coarse meshes in the remaining regions.

B. Numerical validation of scaling relations

To provide an overview of the transient behavior of we
fountain flows in a stably stratified fluid, visualizations of th
typical time evolution of the numerically simulated transie
temperature and stream function contours are presente
Fig. 3 for a plane fountain with Fr51.0, Re5200, Pr57,
ands52.5. From initialization, the fountain is seen to gro
in both height and breadth, producing a gravity intrusion t
travels away from the fountain on the horizontal bounda
By the timet510, the fountain core has reaches full dev
opment, however the gravity intrusion continues to gro
Considerable work has been carried out on gravity intrusi
and in a recent study, Maxworthyet al. @15# investigated the
gravity intrusion produced by a lock flow in a stratified am
bient. Although many of the features of that flow were d

FIG. 3. Time evolution of numerically obtained temperature a
stream function contours for a plane fountain with Fr51.0, Re
5200, Pr51.0, ands52.5.
8-6
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ferent to the fountain flow considered here, the early sta
of the intrusion flow are similar. Maxworthyet al. obtained
intrusion nose propagation speeds for a range of dom
height ratios, density differences, and stratifications. App
ing their results to the fountain shown here predicts an in
sion nose velocity of'1.0. In Fig. 3 the intrusion nose has
velocity of 0.875 fromt52 to t54, 1.0 from t54 to t
56, 1.125 fromt56 to t58, and 0.87 fromt58 to t
510, and these results are, therefore, in reasonable ag
ment with those of Maxworthyet al. @15#.

It is found from this figure that the fundamental flow pa
terns are qualitatively similar to those of the weak founta
in homogeneous fluid with Fr51.0, Re5200, and Pr57
@17,18#, although there are some distinct different featu
and quantitative differences which will be discussed bel
The development of the axisymmetric fountain is quali
tively similar to that of the plane fountain, and for brevit
only the plane fountain has been shown.

To validate the scaling relations obtained in Sec. II
series of numerical simulations have been carried out
both axisymmetric and plane fountains with selected val
of the control parameters Fr, Re, Pr, ands. Specifically, Fr
50.2, 0.4, 0.6, 0.8, and 1.0 with Re5200, Pr51.0, ands
52.5 are used to show the dependence of the scalings o
for axisymmetric fountains, whereas Fr50.2, 0.4, 0.6, 0.8,
and 1.0 with Re5200, Pr51.0, ands53.0 are used to show
the dependence of the scalings on Fr for plane founta
Re520, 50, 100, and 200 with Fr51.0, Pr51.0, and s
52.5 are used to show the dependence of the scalings o
for axisymmetric fountains, whereas Re520, 50, 100, and
200 with Fr51.0, Pr51.0, ands53.0 are used to show th
dependence of the scalings on Re for plane fountains
50.7, 1.0, 4.0, 7.0, and 10.0 with Fr51.0, Re5200, ands
52.5 are used to show the dependence of the scalings o
for axisymmetric fountains, whereas Pr50.7, 1.0, 4.0, 7.0,
and 10.0 with Fr51.0, Re5200, ands53.0 are used to
show the dependence of the scalings on Pr for plane fo
tains; ands50.1, 0.2, 0.3, 0.4, 0.5, 0.6, 1.0, 1.5, 2.0, 2.5, 3
3.5, 4.0, 4.5, and 5.0 with Fr51.0, Re5200, and Pr51.0 are
used to show the dependence of the scalings ons.

To use the numerical results to validate the scaling re
tions and to confirm that21/3 is the appropriate value fo
the powerc for weak fountains with Fr'1.0 ands>1.0 in
stratified fluids, we write the scaling relation forym in the
following general form:

ym5a1bsc, ~52!

with fixed Re, Pr, and Fr, whereb5Fr(11c)Re2(11c)/2 anda
is included because the relation obtained fors '1.0 may not
extend unchanged tos50 ~as will be shown below!. We then
wish to plot Eq.~52! in log-log form, but we must transfera
to the left hand side of Eq.~52!, giving

ln~ym2a!5b1c ln~s!, ~53!

and the slope of the log-log plot will then givec. However,
the numerical results give a set of (ym , s), they do nota
priori give a. The procedure that was followed to determi
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c anda was to first plot ln(ym) against ln(s), and obtain the
slope of any linear region, providing a first estimate forc.
This c was then used to obtaina, allowing ln(ym2a) to be
plotted against ln(s), giving a new estimate forc. This pro-
cess was repeated untilc was constant to three significan
figures.

In Fig. 4, ln(ym) is plotted against ln(s) for both axisym-
metric and plane fountains with Re5200, Pr51.0, and Fr
51.0. The linear fits in the region of 1.0<s<5.0 give the
valuec520.335(60.003) for both axisymmetric fountain
and plane fountains. It is clear thatc521/3 is the appropri-
ate power for the scaling relation, Eqs.~21! and~28!, as was
obtained in the scaling analysis. The numerical results fos
,1.0 do not show a linear relation betweenym and s21/3,
indicating c521/3 is not the appropriate power for th
range ofs. In fact, as we discussed in Sec. II B 1, the scali
relation, Eq.~21!, was obtained with the assumption thats
>1.0. Fors,1.0, the slopes of the plots in Fig. 4 increa
gradually towards 0, supporting the hypothesis thatc must be
0 at s50. Similar results for Re variation withs fixed show
that for s>1, d'1/3, while fors50, d'1/2. In the subse-
quent numerical validations of the scaling relations, it h
therefore been assumed thatc521/3, d51/3.

In Fig. 5, the numerical results validating the scaling
lation for ym @Eqs. ~21! and ~28!# are presented, where th
four sets of data showing the respective dependence on
Re, Pr, ands have been combined. Theym have been plotted
against Fr, Re, ands in the form Fr2/3/(Res)1/3, as predicted
by the scaling relation, no variation was observed with
spect to Pr, again as predicted. The results are seen to the
collapse onto a single line for each of the axisymmetric a
plane sets of data, confirming the scaling relations, wh
can be expressed in the following general linear quantita
relation for both axisymmetric and plane fountains in t
ranges of Fr, Re, ands considered:

FIG. 4. ln(ym) plotted against ln(s) for 1.0<s<5.0 when Re
5200, Fr51.0, and Pr51.0.
8-7
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ym5a1b
Fr2/3

~Res!1/3
, ~54!

wherea andb are constants determined by regression of
numerical data, which are listed in Table I.

The numerical results validating the scaling relations
xw @Eqs.~36! and~37!# are shown in Fig. 6. Once again, n
Pr dependence was observed and so the data are pl
against Fr2/3/(Res)1/3, as predicted by the scaling relatio
The data collapse onto a line for each of the axisymme
and plane fountain sets, with the linear regression coe
cients given in Table I.

Results for the interface thickness,Dy
T
, are shown in Fig.

7. In this case, the data were found to vary with Fr, Re,
ands and have, therefore, been plotted against all these
trol parameters in the form Fr2/3/(Re Prs)1/3, again confirm-
ing the scaling prediction of Eqs.~40! and ~41!, with the
linear regression coefficients given in Table I.

FIG. 5. ym plotted against Fr2/3/(Res)1/3.
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The times for the fountain core to reach a steady st
tms, are shown in Fig. 8. In this case, the scaling relatio
Eq. ~44!, shows variation with respect to Fr only, and th
data have been plotted against Fr2, with the linear behavior
confirming the scaling prediction. The linear regression
efficients are shown in Table I. Results for the time to rea
a steady state for the temperature layer,tm f , are shown in
Fig. 9, plotted against Fr2/Pr1/3, again confirming the scaling
relation, Eq. ~45!, with the linear regression coefficient
shown in Table I.

The profiles of the vertical velocityv(0,y) and tempera-
ture u(0,y) characterize the fountain flow at a steady st
@16–19#. To show the effect of Fr, Re, Pr, ands on v(0,y),
the numerical results are presented in Fig. 10 for six set
Fr, Re, Pr, ands for both the axisymmetric and plane foun
tains. All sets of data fall onto a single curve, which is w
approximated by

v~0,y!51.00010.320S y

ym
D22.272S y

ym
D 2

10.952S y

ym
D 3

~55!

FIG. 6. xw plotted against Fr2/3/(Res)1/3.
TABLE I. Regression results for both axisymmetric and plane fountains.

y x Fountain type a b R

ym Fr2/3(Res)21/3 Axisymmetric 0.186(60.012) 5.842(60.086) 0.9980
Plane 0.306(60.015) 8.895(60.117) 0.9984

xw Fr2/3(Res)21/3 Axisymmetric 0.922(60.006) 5.056(60.102) 0.9992
Plane 0.992(60.016) 12.401(60.126) 0.9991

Dy
T

Fr2/3(Re Prs)21/3 Axisymmetric 0.023(60.002) 0.967(60.012) 0.9986
Plane 0.019(60.002) 1.364(60.014) 0.9990

tms Fr2 Axisymmetric 0.619(60.182) 8.248(60.198) 0.9943
Plane 0.871(60.251) 14.887(60.273) 0.9967

tm f Fr2Pr21/3 Axisymmetric 0.673(60.107) 9.144(60.122) 0.9982
Plane 1.021(60.191) 15.877(60.219) 0.9981
8-8
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for the axisymmetric fountains and

v~0,y!51.00010.145S y

ym
D22.287S y

ym
D 2

11.142S y

ym
D 3

,

~56!

for the plane fountains, confirming thatym is the appropriate
length scale forv(0,y), similar to that for weak fountains in
homogeneous fluids@16–19#.

In Fig. 11, the numerically obtained temperature profi
u(0,y) on the symmetry axis are plotted againsty
2ym)/Dy

T
for the same sets of Fr, Re, Pr, ands as used in

Fig. 10 for both the axisymmetric and plane fountains.

FIG. 7. Dy
T

plotted against Fr2/3/(Re Prs)1/3.

FIG. 8. tms plotted against Fr2.
06630
s

l

sets of data again fall onto a single curve, indicatingDy
T

and

ym are again the appropriate length scales foru(0,y), that is,

u~0,y!; f S y2ym

Dy
T

D , ~57!

similar to that for weak fountains in homogeneous flui
@16–19#.

IV. CONCLUSIONS

The behavior of both weak axisymmetric and plane fou
tains that result from the injection of denser fluids upwa

FIG. 9. tm f plotted against Fr2/Pr1/3.

FIG. 10. Numerical simulatedv(0,y) plotted againsty/ym in the
fountain core for six sets of Fr, Re, Pr, ands for ~a! axisymmetric
fountains and~b! plane fountains: , Fr50.4, Re5200, Pr
51.0, s52.5; • • • •, Fr51.0, Re5200, Pr51.0, s51.0; ,

Fr51.0, Re5200, Pr51.0, s52.5; • • • , Fr51.0, Re

5200, Pr51.0, s55.0; s , Fr51.0, Re550, Pr51.0, s
52.5; d , Fr51.0, Re5200, Pr57.0, s52.5.
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into large containers containing stably stratified fluids h
been studied using dimensional analysis, scaling analy
and direct simulation with a time-accurate finite volum
code.

FIG. 11. Numerical simulatedu(0,y) plotted against (y
2ym)/Dy

T
in the fountain core for six sets of Fr, Re, Pr, ands for

~a! axisymmetric fountains and~b! plane fountains: , Fr50.4,
Re5200, Pr51.0, s52.5; • • • •, Fr51.0, Re5200, Pr51.0, s
51.0; , Fr51.0, Re5200, Pr51.0, s52.5; • • • , Fr

51.0, Re5200, Pr51.0, s55.0; s , Fr51.0, Re550,
Pr51.0, s52.5; d , Fr51.0, Re5200, Pr57.0, s52.5.
s

ch
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For Fr '1.0, the specific momentum flux and speci
buoyancy flux at the fountain discharge source are impor
control parameters. Additional control parameters are
stratification numbers of the ambient fluid and the viscos
of the fluid. Dimensional consistency provided scaling re
tions forym , xw , Dy

T
, tms, andtm f which depended on the

control parameters, together with the powersc andd. A scal-
ing analysis, based on the assumption that the foun
height is controlled by the rate, at which fluid can exit t
fountain via the downstream viscous intrusion, gave tenta
values ofc521/3, d51/3. A series of numerical simula
tions show that the numerical results agree well with
analytical scaling relations and confirm thatc>21/3,d
>1/3 are the appropriate powers for both weak axisymme
and plane fountains when 0.2<Fr<1.0, 5<Re<500, 0.7
<Pr<10, and 1.0<s<5.0. The numerical results also sho
that ym and (y2ym)/Dy

T
are the appropriate length scale

for the profiles of vertical velocity and temperature on t
symmetry axis for both axisymmetric and plane fountains
stratified fluids, similar to those for weak fountains in hom
geneous fluids.
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